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Abstract 

Lubricated mechanical mechanisms operate under service conditions influenced by several environmental 

parameters, and their lifetimes may be threatened due to inappropriate use or by the presence of solid 

contaminants. The objective of this work is to study the effect of three operating parameters, namely: rotational 

speed 𝑉, load 𝑄 and kinematic viscosity 𝜈 in the presence of three sizes of solid contaminants 𝑇, on the 

degradation of an EHL contact, to predict the ranges of effects that may lead to the damage of the contacting 

surfaces. In our investigation, an experimental design of nine trials is used to combine four factors with three 

levels each to accomplish the experimental investigation. Artificial neural network regression and the 

desirability function were used for the interpretation and modelling of the responses, which are: wear 𝑊,  

arithmetic mean height 𝑅𝑎, total profile height 𝑅𝑡  and maximum profile height 𝑅𝑧. From these methods we 

observed that the sand grain sizes have a significant impact on the wear 𝑊 and the roughness 𝑅𝑎, but that 

viscosity has the primary influence on the variation of the roughnesses 𝑅𝑡 and 𝑅𝑧. We also found that the 

quality of the predicted models is very good, with overall determination coefficients of 𝑅2 learning = 0.9985 

and 𝑅2 validation = 0.9996. Several levels of degradation depending on the operating conditions are predicted 

using the desirability function. 
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List of Symbols/Acronyms 

 

 (µ𝑚)– Solid contaminants; 

𝑦�̅� – Average response; 

𝑦�̂�– Predicted response; 

σ𝑦�̅�
2– Uncertainty; 

𝑅2 – The coefficient of determination;  

𝑊𝑖 – The weight; 

𝑦𝑖 – Experiment response; 

bi – the bias; 

D– The desirability; 

Xi – Input vector; 

σ(y) – Standard deviation; 

𝑀𝐴𝐷 – The Mean Absolute Deviation;  

𝑄 (𝑁)– Load; 

𝑅𝑀𝑆𝐸 – The Root Mean Square Error; 

𝑅𝑎 – Arithmetic mean height [µm]; 

𝑅𝑡 –  Total profile height [µm]; 

𝑅𝑧 – Maximum profile height [µm]; 

𝑉 (𝑟𝑝𝑚)– Rotational speed 

𝑊 – Wear [mm]; 

𝑑𝑖– The individual desirability; 

𝜈 (𝑐𝑆𝑡)– Kinematic viscosity; 
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1. INTRODUCTION 

  

Mechanical contacts affected by solid pollution 

can undergo accelerated degradation and many 

studies have been conducted in this context to try to 

predict the degree of early degradation. Several 

contributions from researchers have studied the 

behaviour of the elastohydrodynamic contact, 

including [1], which briefly reviews the history of its 

development, and [2], which highlights the progress 

that has been made since then, both in numerical 

modelling and in experimental research on EHL. 

Several papers address the lubrication performance 

and the mechanisms that govern EHL film formation 

[3-8]. The authors of [9] clarify the relevant aspect 

of the viscosity‒temperature‒pressure relationship 

of lubricating oils. Ultrasound is also used by [10] to 

determine the thickness of the oil film in 

elastohydrodynamically lubricated (EHL) contacts 

for opposing surfaces completely separated by the 

liquid layer. The effects of different rough 
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topographies combined with the associated particle 

parameters on EHL performance and the minimum 

film thickness distribution under different loads, 

operating speeds and initial viscosities are also 

studied by [11]. In [12], the authors have addressed 

the combination of elastohydrodynamic lubrication 

(EHL) and the inclusion problem to consider the 

effect of material inhomogeneity on the lubrication 

performance and subsurface stress distribution. On 

the other hand, the elastic deformation of the 

interface greatly influences the overall performance 

of the oil film, which is related to the material, inlet 

pressure, velocity, viscosity and the minimum oil 

film thickness that determines the LHS [13]. The 

roughness of the surfaces in lubricated contact is 

studied in turn in order to deduce the disturbance of 

the lubricating film thickness [14-18], and also in 

this axis [19] reports new updated film parameter, 

which takes into account the elastohydrodynamic 

lubrication effects induced by surface irregularities 

at the microscopic scale (micro-EHL). The 

consequences of particle entrapment have been 

analysed theoretically and experimentally in 

numerous works [20-23], and extensive research has 

been carried out on surface indentation, wear, 

scratching, frictional heating, acoustic emission 

(noise), scratching and overall reduction in the 

remaining life of contacts. 

The study of the influence of the service 

parameters of EHL contacts and their interactions on 

the functioning of the mechanisms requires the 

introduction of experimental designs and statistical 

methods. Several methods are used, such as 

regression based on parametric functions [24-25]. 

This paper presents an original investigation 

based on artificial neural networks that uses non-

parametric functions for regression. In order to 

predict the degradation of the EHL contact, a study 

of the influence of the parameters: rotation speed, 

load and kinematic viscosity in the presence of three 

sizes of solid pollutant is carried out. This work 

allows us to test the simultaneous variation of the 

parameters studied. 

  
2 EXPERIMENTAL DEVICE AND 

EQUIPMENT USED 

 

This work is a study that tests parameters for 

which well-defined value levels are imposed. The 

design of experiments is a tool that allows a large 

number of parameters to be tested with a reduced 

number of tests on a single sample. The tests are 

carried out at a temperature and pressure that do not 

affect the progress of the tests. 

The test device [25] is configured in such a way 

that the experiments can be carried out without any 

problems. In fact, a rotating steel disc and a 

cylindrical specimen are mounted in contact, nine 

strips are used for friction and the tenth is a witness 

strip as shown in Fig. 1, and the duration of each test 

is 20 min in the device. 

 
Fig. 1. Schematic of the test set-up used 

 

The equipment used to carry out the experiments 

was a cylindrical test tube made of 316L stainless 

steel, Ø50 mm and 240 mm long. The test piece 

consists of nine strips, separated from each other by 

small grooves 2 mm deep; stainless steel discs 316 

L, Ø50; fillers; and sand filtered to 63, 90 and 125 

microns with a concentration of 5 g/l in the lubricant 

used. A digital caliper was used to measure the loss 

of ribs; a roughness meter to measure the roughness; 

and three types of oil (as listed in Table 1).  

The experimental design used in this 

investigation is a Taguchi L9 design with 4 factors 

and 3 levels each, namely: 𝑇 (particle sizes (µ𝑚)); 𝑄 

(load (𝑁)); 𝑉 (rotation speed (𝑟𝑝𝑚)); and 𝜈 

(kinematic viscosity (𝑐𝑆𝑡)) as shown in Table 2. This 

choice allows a minimum of tests and a reduced 

blow. 

 
The parameters are chosen to simulate various 

conditions affecting the elastohydrodynamic 

contact, namely lubrication and contamination of the 

contact by various sizes of solid contaminants, as 

well as rotational speed and load, in order to predict 

the levels of operating parameters that will minimize 

degradation of the mechanical contact. 

 

2.1. Checking response measurements 

Measurement uncertainty can be caused by: 

- Systematic errors, 

- Accidental errors, 

- Statistical dispersions 

It is also well known that experimental tests give 

different results each time they are repeated, and the 

Table 1. Viscosity classification of oils 

Viscosity classes 
Kinematic viscosity limits 

(cSt) at 40°C 

ATF II D 36 à 40 

ISO VG 150 135 à 165 

ISO VG 220 198 à 242 

 
 

Table 2. Levels of factors in the experiment 

series 

Viscosity  

𝝂 (𝒄𝒔𝒕) 

Rotation 

speed 

𝑽 (𝒓𝒑𝒎) 

Size of 

particles 

𝑻 (µ𝒎) 

Loading 

𝑸 (𝑵) 

40 400 60 100 

150 1000 90 130 

220 1600 120 160 
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propagation of uncertainties influences the quality of 

the investigations and creates difficulty when 

verifying the measured values. In our case, we 

carried out five measurements for each output, 

namely: wear w, roughness Ra, Rt, and Rz. For each 

parameter, we have nine tests, so 36 values to check 

and estimate their uncertainties (Table 3). 

By calculating the average of the five 

measurements, the absolute error σ(𝑦) (standard 

deviation) and the uncertainty σ�̅�2 are given by the 

following formulae: 

The average of the measurements is: 

𝑦 = ∑
𝑦i

n

n
i=1                                                        (1)                  

The experimental standard deviation given by the 

expression is: 𝛔(Y) = √
1

n−1
∑ (𝑦𝑖 − 𝑦�̅�)

n
i=1

2
           (2)                     

Uncertainty:  σ𝑦�̅�
2 =

1

n
 σ𝑦2                                  (3) 

The measurement result is written as follows: 

�̅� ∓ σ�̅�2 

 

3 METHODOLOGIES  

 

In order to exploit the results obtained, an 

artificial neural network method is used. The latter 

model complex relationships and can be used in 

regression, which is the case of our study. The 

network used (Fig. 2) has two hidden layers and a 

hyperbolic tangent activation function as fellow: 

𝑊2 = 𝑓(𝑊1 ∗ 𝑋 + 𝑏1)  (4) 

𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (5) 

𝑦 = 𝑊2 ∗ 𝐴 + 𝑏2  (6) 

Here, 𝑊2 is the intermediate value between the two 

hidden layers, 𝑋 is input vector with four elements, 

then, we have three neurons in the first hidden layer, 

the weight matrix 𝑊1 is a 3×4 matrix, the bias 𝑏1 is 

also three elements vector. 

In the second hidden layer, we have four neurons, 

the weight matrix 𝑊2 is a 4×3 matrix, the bias 𝑏2 and 

the output vector 𝑦 as four element vectors.  

Where: 

𝑦 = [

𝑊

𝑅𝑎

𝑅𝑡

𝑅𝑧

] 

 

Fig. 2. Neural network used with a hidden layer 

 

The objective is to prove that the model generates 

good estimates of the values of the variables under 

study. The training data is used to calibrate the 

model, while the validation set is used to show that 

the model is reliable and relevant. 

Once the model has been created with the 

training dataset, it is necessary to calculate objective 

indicators to assess whether the model has generated 

relevant predictions for the variable under study, 

such as the coefficient of determination 𝑅2, whose 

formula is written: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅̅̅)2𝑛
𝑖=1

           (7) 

The Root Mean Square Error (RMSE) is 

considered an excellent general-purpose error 

measure for numerical predictions and the Mean 

Absolute Deviation (MAD) is a measure of 

variability that indicates the average distance 

between observations and their mean. These are 

written as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1              (8) 

𝑀𝐴𝐷 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̅�)

2𝑛
𝑖=1                   (9)   

where:     

 𝑦�̂� ∶ Predicted response 

𝑦𝑖 : Experiment response 

𝑦�̅� : Average response. 

 

The artificial neural network to optimize the 

regression models uses the 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐷 metrics, 

which are expressed in the same unit as the variable 

being predicted and are therefore easier to interpret. 

These metrics quantify the errors made by the model. 

The higher they are, the worse the model performs. 
 

3. RESULTS AND DISCUSSION 

 

After carrying out the tests in accordance with 

Taguchi's L9 orthogonal, the wear W and roughness 

(𝑅𝑎, 𝑅𝑡 and 𝑅𝑧) are measured, and the results are 

summarized in Table 4.  

• 𝑊: wear (𝑚𝑚); 

• 𝑅𝑎: arithmetic mean deviation of the evaluated 

profile (µ𝑚);  
• 𝑅𝑡: sum of the greatest of the projection heights 

and the greatest of the depression depths (µ𝑚); 
• 𝑅𝑧: height of the maximum irregularities of the 

profile (µ𝑚). 
 

Table 3. Summary of wear and roughness 

 measurement uncertainty Ra, Rt and Rz 

σ�̅�2W σ�̅�2Ra σ�̅�2Rt σ�̅�2Rz 

0.005 0.001 0.0009 0.002 

0.002 0.007 0.007 0.003 

0.003 0.002 0.008 0.002 

0.004 0.003 0.0009 0.002 

0.004 0.005 0.006 0.009 

0.008 0.005 0.007 0.002 

0.004 0.003 0.002 0.005 

0.008 0.001 0.002 0.007 

0.006 0.005 0.004 0.008 
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4.1. Application of artificial neural network model  

The prediction models obtained by our study are 

deemed acceptable with overall coefficients of 

determination close to 1: 

- R2  learning = 0.9990506 

- R2  validation = 0.9257915 

Where: 

 

𝑊1 = 0.5 ∗ [
0.022873 −0.025525 0.027293 −0.001924
−0.00841 0.006122 −0.015278 −0.001428
−0.02125 0.063339 −0.013787 −0.00032

] 

 

𝑏1 = [
5.3876555
3.680334

−1.626522
] 

 

𝑊2 = [

0.000855 −0.016442 0.014373
0.027237 −0.205278 0.260805

−0.720235 −0.985626 1.739268
−1.548099 −1.407945 2.624222

] 

 

𝑏2 = [

0.019375
0.495760
3.252981
3.547100

] 

 

𝑦 = [

𝑊

𝑅𝑎

𝑅𝑡

𝑅𝑧

] 

 

• Validation of artificial neural network 

model  

The model validation parameters: R2, RMSE and 

MAD, are deemed acceptable and their values are 

presented in Table 5. 

This involves carrying out additional 

experiments at different points in the study area. 

When the measured values are compared with the 

model predictions, we see that test points a, b, and 

c are near the predicted points (Fig. 3). The 

coefficients of determination 𝑅2 reported in Table 

6 show an acceptable level of error for the model. 

Effect of input parameters on responses. 

The main effects correspond to the values of the 

weights W1i; if the values of the latter are 

significant, the corresponding inputs Xi are those 

that influence the output, values Yi. The average  

change in response from the low level of input Xi to 

its high level gives the total effect of a factor. 

Using the grouped histograms of the main effects 

(Fig. 4) and the overall effects (Fig. 5), the following 

observations can be made:  

- The summary of the overall ratio for the main effect 

clearly indicates that solid pollution has a 

dominant impact of 0.396, followed by viscosity in 

second place, with an effect equal to 0.243.  

 

Fig. 3. Comparing experimental and predicted values 

Table 4. Summary of inputs and outputs of the experiments conducted. 

Tests 𝜈 (𝑐𝑆𝑡) 𝑇 (µ𝑚) 𝑄 (𝑁) 𝑉(𝑟𝑝𝑚) 𝑊(𝑚𝑚) 𝑅𝑎 (µ𝑚) 𝑅𝑡 (µ𝑚) 𝑅𝑧 (µ𝑚) 

1 220 63 100 200 0,005 0,304 2,38 1,6 

2 220 90 130 800 0,022 0,572 4,2 5,5 

3 220 125 160 1600 0,034 0,69 7,4 10,3 

4 150 63 130 1600 0,014 0,284 1,82 0,68 

5 150 90 160 200 0,014 0,382 1,46 1,08 

6 150 125 100 800 0,028 0,546 2,88 1,6 

7 37 63 160 800 0,024 0,436 2,3 1,74 

8 37 90 100 1600 0,018 0,464 2,22 1,96 

9 37 125 130 200 0,016 0,442 2,16 1,34 
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- It can also be observed that the summary of the 

overall ratio of the total effect indicates that solid 

pollution has the first impact, with a value of 0.462, 

followed by viscosity with an effect equal to 0.323. 

These two factors visibly contribute to the increase 

in wear and roughness 𝑅𝑎, 𝑅𝑡 and 𝑅𝑧, and may 

therefore cause the early degradation of the 

elastohydrodynamic contact studied. 

- The wear and roughness 𝑅𝑎 are influenced first by 

the size of the pollutant𝑇, followed in second place 

by the viscosity𝜈; on the other hand, the latter 

affects first the variation of the roughness’s 𝑅𝑡 and  

𝑅𝑧. 

We used the desirability function proposed by 

Derringer and Suich [26]. The overall desirability 𝐷 

is the geometric mean of the individual desirability 

𝑑𝑖. The desirability 𝐷 is determined by the formula: 

𝐷 = (𝑑1,𝑑2 … , 𝑑𝑛)
1

𝑛 

Where: 

 𝑑𝑖(𝑖 = 1, 2, … , 𝑛) is the individual desirability. 

 

 

Fig. 4. Main effect of factors on wear W, 

roughness Ra, Rt, Rz and the global factor 

ratio 

Table 5. Model validation parameters: 𝑅2, 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐷. 

Measures Value 

Training  Validation  

𝑊 (𝑚𝑚) 

             Determination coefficient 𝑅2 0,65018 0,9206482 

Root mean square error (𝑅𝑀𝑆𝐸) 0,0044228 0,0025335 

Mean absolute deviation (𝑀𝐴𝐷) 0,0037957 0,002371 

𝑅𝑎 (µ𝑚) 

             Determination coefficient 𝑅2 0,6880061 0,9650908 

Root mean square error (𝑅𝑀𝑆𝐸) 0,0611414 0,0249095 

Mean absolute deviation (𝑀𝐴𝐷) 0,0415199 0,0221399 

𝑅𝑡 (µ𝑚) 

             Determination coefficient 𝑅2 0,9337517 0,5627107 

Root mean square error (𝑅𝑀𝑆𝐸) 0,197226 1,7527859 

Mean absolute deviation (𝑀𝐴𝐷) 0,1560046 1,5285203 

𝑅𝑧 (µ𝑚) 

             Determination coefficient 𝑅2 0,7989301 0,6336219 

Root mean square error (𝑅𝑀𝑆𝐸) 0,689519 2,5945114 

Mean absolute deviation (𝑀𝐴𝐷) 0,6375022 2,2354322 

 
Table 6. Summary of wear and roughness validation testes 

values ν (cSt) T (µm) Q (N) V (rpm) W Ra Rt Rz 

Predicted values 

40 90 140 400 0.021 0.567 4.156 5.006 

40 90 140 1600 0.029 0.672 4.502 5.73 

40 120 140 1000 0.03 0.7 4.7 6.21 

Test values 

40 90 140 400 0.021 0.567 4.156 5.006 

40 90 140 1600 0.029 0.672 4.502 5.73 

40 120 140 1000 0.03 0.7 4.7 6.21 

R2     0.9960 0.9090 0.9860 0.7869 
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Fig. 5. Total effect of factors on wear W, roughness Ra, 

Rt, Rz and the global ratio of factors 

The relationship between the predicted response 

of one or more dependent variables and the 

desirability of the response is called the desirability 

function. To define the desirability of a response, one 

must first specify a desirability function for each 

dependent variable, assigning scores from 0 

(unfavorable) to 1 (very desirable) to the predicted 

values. The individual desirability 𝑑𝑖  of the 

predictors for each dependent variable is then 

summarised by calculating their geometric mean. 

The desirability profiles consist of a series of graphs, 

one for each independent variable, showing the 

overall desirability at different levels for an 

independent variable, while the other independent  

variables do not change in level. By examining 

the desirability profile, we can visually determine the 

level of the predictor that produces the most 

desirable predictive response for the dependent 

variable. 

The prediction profiler allowed a more detailed 

reading of the effects of the factors on wear W and 

roughness 𝑅𝑎, 𝑅𝑡 and 𝑅𝑧. This tool allows the 

optimisation of the operating environment by 

exploiting the effects of the most dominant 

parameters on the degradation. Fixing the speed at 

1600 𝑟𝑝𝑚 and the load at 160 𝑁, we combined the 

maximum and minimum values of the kinematic 

viscosity υ and the grain size 𝑇. Using Figs. 6, 7, 8 

and 9, we find that when the grain size 𝑇 = 63 µ𝑚, 

the values of wear W and roughness Ra are minimal 

(𝑊 =  0.023 𝑚𝑚 and 𝑅𝑎 =  0.5 µ𝑚 (Fig. 8); 

𝑊 =  0.026 𝑚𝑚 and 𝑅𝑎 =  0.26 (Fig. 6)). On the 

other hand, the kinematic viscosity 𝜐 =  220 𝑐𝑆𝑡 

influences the variation of the terms 𝑅𝑡 and 𝑅𝑧, the 

latter taking minimal values (𝑅𝑡 =  2.63 µ𝑚 and 

𝑅𝑧 =  2.38 (Fig. 6)). 

The presence of large sand particles (𝑇 =
 125 µ𝑚) in the lubricant increases wear by abrasion 

of the surfaces in contact (Figs. 7 and 9). Thus, the 

unavoidable presence of solid particles in the 

lubricant has a double effect; on the one hand it 

accelerates the degradation of the surfaces in contact 

and on the other it leads to the degradation of the 

main physical‒chemical properties of the lubricants. 

The results obtained show the reasons for the 

reduction in the life of elastohydrodynamic systems 

in a polluted environment. 

 

 

Fig. 6. Prediction of wear and roughness (Ra, 

Rt and Rz) for the parameters: υ = 220 cSt; V 

= 1600 rpm; T = 63 µm; Q = 160 N 

 

 

Fig. 7. Prediction of wear and roughness (Ra, 

Rt and Rz) for the parameters: υ = 220 cSt; V 

= 1600 rpm; T = 125 µm; Q = 160 N 

 

According to the analysis carried out using the 

artificial neural network, it was found that pollution 

is the most influential parameter on the degradation 

of the elastohydrodynamic contact studied, but this 

dominance does not exclude the effect of the 

viscosity of the lubricant on the roughness measured. 

A photo was taken at ×240 magnification, from 

which a change in the surface condition compared to 

the new condition (Fig. 10) and a different 

morphology can be seen. This is due to the variation 

of the four parameters simultaneously.  

Firstly, Figs. 11, 15 and 19 show very 

deteriorated surfaces due to the low contact speed.  
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Fig. 8. Prediction of wear and roughness (Ra, 

Rt, and Rz) for the parameters: υ = 37 cSt; V 

= 1600 rpm; T = 63 µm; Q = 160 N 

 

 

Fig. 9. Prediction of wear and roughness (Ra, 

Rt, and Rz) for the parameters: υ = 37 cSt; V 

= 1600 rpm; T = 125 µm; Q = 160 N 

 

It should be noted that when the speed of the surfaces 

is low, the debris remains grouped and produces 

wider and deeper indentations. The indentations in 

themselves do not present a real danger for the 

surfaces or therefore for the parts in contact. 

However, the cyclic passage of this indent into the 

contact and the change in the pressure and stress field 

can lead to the formation of micro-cracks that can 

produce flaking [27]. The viscosity of the lubricant 

and the size of the grains are at the origin of the 

different morphology of the results obtained, the 

brittle particles explode at the entrance of the EHD 

contact, producing small fragments that result in a 

larger number of particles that indent the surfaces. 

Low viscosity does not allow good protection of the 

contacting surfaces, which can be underfed, and this 

is accentuated with contacts operating at low speeds. 

Underfeeding, which is caused by insufficient 

amounts of lubricant at the contact entrance, also 

increases the risk of damage. Indeed, it is well 

established that a reduction in the amount of 

lubricant available causes a decrease in the thickness 

of the separator film [28, 29]. 

Secondly, it is noted that tests 7 Fig. 17, 6 Fig. 16 

and 2 Fig. 12 show less surface modification than 

tests 1 Fig. 11, 5 Fig. 15 and 9 Fig. 19, with a spacing 

between the craters produced by the indents. The 

contact operating at a rotation speed of 800 rpm 

induces a wider spalling, the image of test 7 (𝜐 =
 37 𝑐𝑆𝑡; 𝑇 =  63 µ𝑚 and 𝑄 =  160 𝑁) shows quite 

a lot of spalling compared to test 6 and 2, and the low 

viscosity and higher load cause quite deep craters. In 

pure running condition, the particles do not embed 

themselves on the surface of the lubricated contacts. 

It should be noted that the presence of even a small 

amount of slip significantly alters the indentation 

pattern.  

Moreover, the presence of sliding causes a 

scattering of debris, which induces greater damage 

to the surface, and it happens that particles remain 

embedded and pass several times in the contact [27]. 

This phenomenon is observed in test 8 Fig. 18, test 4 

Fig. 14 and test 3 Fig. 13, as the sliding speed is more 

visible, (tests 3 Fig. 13 and test 4 Fig. 14) with a 

speed of 1600 rpm in the presence of solid pollution. 

Furthermore, lubrication with an oil of kinematic 

viscosity υ = 37 cSt accentuates the size of the craters 

and this is shown by the image of test 8 in Fig. 18. 

 

 
Fig. 10. Original state photo of the contact 

surfaces, magnification ×240 (specimen) 

 

Fig. 11. Photo of the contact surfaces 

(magnification ×240). Test 1: =220 cSt; V=200 

rpm; T=63 µm; Q= 100 N 
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Fig. 12. Photo of the contact surfaces 

(magnification ×240). Test 2: υ=220 cS; 

V=800 rpm; T=90 µm; Q= 130 N 

 

 

Fig. 13. Photo of the contact surfaces 

(magnification ×240). Test 3: =220 cSt; 

V=1600 rpm; T=125 µm; Q= 160 N 

 

Fig. 14. Photo of the contact surfaces 

(magnification ×240). Test 4: =150 cSt; 

V=1600 rpm; T=63 µm; Q= 130 N 

 

 

Fig. 15. Photo of the contact surfaces 

(magnification ×240). Test 5: =150 cSt; 

V=200 rpm; T=90 µm; Q= 160 N 

 

 

Fig. 16. Photo of the contact surfaces 

(magnification ×240). Test 6 : =150 cSt ; 

V=800 rpm ; T=125 µm ; Q= 100 N. N 

 

Fig. 17. Photo of the contact surfaces 

(magnification ×240). Test 7: υ=37 cSt; 

V=800 rpm; T=63 µm; Q= 160 N 
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Fig. 18. Photo of the contact surfaces 

(magnification ×240). Test 8: υ=37 cSt; 

V=1600 rpm; T=90 µm; Q= 100 N 

 

 

Fig. 19. Photo of the contact surfaces 

(magnification ×240). Test 9: =37 cSt; V=200 

rpm; T=125 µm; Q= 130 N. 

 

5. CONCLUSIONS AND FUTURE WORK 

 

Elastohydrodynamic contacts are a mysterious 

field of research, where several phenomena occur. 

The operating environment and their interactions 

give rise to complex behaviours that are difficult to 

explain. In this paper we have tried to give answers 

by using a Taguchi L9 design of experiment, which 

allowed us to combine four parameters: rotation 

speed 𝑉, load 𝑄, kinematic viscosity 𝜐 and solid 

pollutant (sand) 𝑇. The processing of the results is 

carried out using an artificial neural network to 

identify the parameters that have an impact on the 

degradation in terms of wear 𝑊 (loss of dimension) 

and surface condition by the indicators: 𝑅𝑎, 𝑅𝑡 and 

𝑅𝑧.  

- This approach allowed us to:  

- Write prediction models for wear and roughness 

𝑅𝑎, 𝑅𝑡 and 𝑅𝑧 with global determination 

coefficients close to 1: 𝑅2 learning = 0.9985 and 

𝑅2 validation = 0.9996.   

- To predict with the desirability function the 

minimum degradation of the 

elastohydrodynamic contact studied, for which 

wear of 0.026 mm and roughness’s 𝑅𝑎 =
 0.44 µ𝑚, 𝑅𝑡 =  2.63 µ𝑚 and 𝑅𝑧 =  2.38 µ𝑚 

are predicted, under the effect of the operating 

environment : 𝜐 =  220 𝑐𝑆𝑡; 𝑉 =
 1600 𝑟𝑝𝑚;  𝑇 =  63 µ𝑚;  𝑄 =  160 𝑁. 

- On the other hand, we concluded that the 

presence of large solid contaminants leads to 

accelerated surface degradation. Furthermore, 

mechanical contacts operating with high 

viscosity lubricants are less deteriorated than 

those using low viscosity lubricants. 

- Speed and load in turn influence contact 

deterioration; and their effect is visible in the 

quality of the contacting surfaces, such as 

indentation and spalling. 

- Indentation of the surfaces leads to disruption of 

the oil film, and thus accelerates the degradation 

process.    

As future work, we plan to study the variation of 

the low viscosity lubricant film as a function of metal 

debris from the operation of the elastohydrodynamic 

contact with a new approach. 
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